Tag Archives: Vibrio

Glowing squid come ashore in Auckland!

Who wouldn't want to see a load of 3D printed squid filled with glowing bacteria?!

Who wouldn’t want to see a load of 3D printed squid filled with glowing bacteria?!

This week, the Bioluminescent Superbugs Lab is taking part in the annual Art in the Dark festival, which sees Auckland’s Western Park transformed into a place of wonder and delight from Thursday the 7th to Saturday the 9th of November.

For the last few months, Siouxsie has been collaborating with artist Rebecca Klee to bring glowing bacteria to Art in the Dark. They have been blogging about the process here. After much discussion of the best way to show off bioluminescence to as many as 40,000 people over 3 nights in an inner city park, Siouxsie and Rebecca settled on displaying glowing bacteria inside 3D printed squid. Rebecca met Danny Dillon of Vivenda who set about designing and printing the squid. Back in the lab it was all hands on deck, with everyone pitching in to make media and figuring out when the bacteria glow their brightest and in which liquid broth.

A big thanks to the Maurice Wilkins Centre for Molecular Biodiscovery and the Faculty of Medical & Health Sciences at the University of Auckland for funding this project.

Why glowing squid?

Rebecca got in touch with Siouxsie after seeing her short animation about the Hawaiian bobtail squid and its bioluminescent invisibility cloak on You Tube. The animation was produced with the support of a public engagement grant from the UK Society for Applied Microbiology, to engage the services of graphic artist Luke Harris and his team.

What didn’t fit into 3 minutes…

The Hawaiian bobtail squid, Euprymna scolopes, is just 3 cm in length and lives in the shallow moonlit waters off Hawaii. It spends its days sleeping buried in the sand, emerging at night in search of food. It has a very cunning trick to hide its shadow from fish looking for a meal, or from creatures like shrimp that it feeds on. It houses a colony of glowing bacteria (Vibrio fischeri) in a special organ on its underside. These bioluminescent bacteria shine their light down so that to any creatures looking up, the squid just looks like the moon. What is even more clever is that the squid uses its ink sac to match the intensity of moonlight hitting its back, dimming the light from the glowing bacteria as needed. This is important not just for cloudy nights but as the squid moves through different depths of water.

Baby squid are born without V. fischeri or a light organ. Instead they just have a small opening in their mantle (the bulbous bit of their body) that is bathed by sea water. What is incredible is that only V. fischeri can colonise this opening – once they do, the squid cells start to change and the light organ forms. The ability to glow is crucial though – scientists have made versions of V. fischeri which can’t glow and they aren’t able to colonise either.

Adult squid have an ingenious way of ensuring that there is plenty of V. fischeri floating around in the water to colonise baby squid. Each morning, before they settle down in the sand to sleep for the day, they expel 99.9% of the bacteria from their light organ into the sea. This serves another purpose too, ensuring the bacteria left behind in their light organ are constantly growing and have plenty of nutrients. Bacteria that run out of nutrients start to shut down to save energy. Producing light takes quite a bit of energy and the last thing the squid wants is a mantle full of lazy dim bacteria!

When scientists first identified V. fischeri and grew it in the lab they noticed something quite interesting. The bacteria only switch on their light when they have reached a critical population size. This makes perfect sense. There is no point going to all the trouble of making light if it isn’t bright enough to be seen. Each bacterium produces a chemical, called the autoinducer, that diffuses out of the bacterial cell. The more bacteria there are, the more autoinducer is produced. If those bacteria are growing in a confined space like a flask, or the light organ of the squid, the autoinducer will accumulate. Once it reaches a critical concentration, the autoinducer triggers the bacteria to switch on the genes for producing light*. This phenomenon is called quorum sensing.

Scientists then used the bioluminescence reaction to see if other species of bacteria produce autoinducers. Surprise, surprise, it turns out that lots of different bacteria use quorum sensing to signal to each other that they are in the right numbers or environment to do something, which is not worth doing otherwise. From the bacterial form of sex, to swimming, to switching on the genes needed to cause disease in plants, animals and humans. Now we just have to find a way of exploiting this to our advantage!

You can hear Siouxsie chatting about the squid and quorum sensing on Radio New Zealand’s Nine to Noon programme with Kathryn Ryan here (13’12”)

*For those who really want to know, the autoinducer is the product of the luxI gene. When it reaches a critical concentration, it interacts with the product of the luxR gene, and together this complex binds to a region of DNA upstream of the genes under their control called the lux box which then triggers their transcription.